Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Public Health ; 11: 1041447, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2283238

RESUMEN

India's dense human and animal populations, agricultural economy, changing environment, and social dynamics support conditions for emergence/re-emergence of zoonotic diseases that necessitate a One Health (OH) approach for control. In addition to OH national level frameworks, effective OH driven strategies that promote local intersectoral coordination and collaboration are needed to truly address zoonotic diseases in India. We conducted a literature review to assess the landscape of OH activities at local levels in India that featured intersectoral coordination and collaboration and supplemented it with our own experience conducting OH related activities with local partners. We identified key themes and examples in local OH activities. Our landscape assessment demonstrated that intersectoral collaboration primarily occurs through specific research activities and during outbreaks, however, there is limited formal coordination among veterinary, medical, and environmental professionals on the day-to-day prevention and detection of zoonotic diseases at district/sub-district levels in India. Examples of local OH driven intersectoral coordination include the essential role of veterinarians in COVID-19 diagnostics, testing of human samples in veterinary labs for Brucella and leptospirosis in Punjab and Tamil Nadu, respectively, and implementation of OH education targeted to school children and farmers in rural communities. There is an opportunity to strengthen local intersectoral coordination between animal, human and environmental health sectors by building on these activities and formalizing the existing collaborative networks. As India moves forward with broad OH initiatives, OH networks and experience at the local level from previous or ongoing activities can support implementation from the ground up.


Asunto(s)
COVID-19 , Leptospirosis , Salud Única , Animales , Niño , Humanos , India/epidemiología , Zoonosis/prevención & control
2.
Front Public Health ; 11: 1018293, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2246573

RESUMEN

Climate change impacts global ecosystems at the interface of infectious disease agents and hosts and vectors for animals, humans, and plants. The climate is changing, and the impacts are complex, with multifaceted effects. In addition to connecting climate change and infectious diseases, we aim to draw attention to the challenges of working across multiple disciplines. Doing this requires concentrated efforts in a variety of areas to advance the technological state of the art and at the same time implement ideas and explain to the everyday citizen what is happening. The world's experience with COVID-19 has revealed many gaps in our past approaches to anticipating emerging infectious diseases. Most approaches to predicting outbreaks and identifying emerging microbes of major consequence have been with those causing high morbidity and mortality in humans and animals. These lagging indicators offer limited ability to prevent disease spillover and amplifications in new hosts. Leading indicators and novel approaches are more valuable and now feasible, with multidisciplinary approaches also within our grasp to provide links to disease predictions through holistic monitoring of micro and macro ecological changes. In this commentary, we describe niches for climate change and infectious diseases as well as overarching themes for the important role of collaborative team science, predictive analytics, and biosecurity. With a multidisciplinary cooperative "all call," we can enhance our ability to engage and resolve current and emerging problems.


Asunto(s)
COVID-19 , Enfermedades Transmisibles Emergentes , Enfermedades Transmisibles , Humanos , Animales , Ecosistema , Cambio Climático , COVID-19/epidemiología , Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles Emergentes/epidemiología
3.
Frontiers in public health ; 11, 2023.
Artículo en Inglés | EuropePMC | ID: covidwho-2237289

RESUMEN

Climate change impacts global ecosystems at the interface of infectious disease agents and hosts and vectors for animals, humans, and plants. The climate is changing, and the impacts are complex, with multifaceted effects. In addition to connecting climate change and infectious diseases, we aim to draw attention to the challenges of working across multiple disciplines. Doing this requires concentrated efforts in a variety of areas to advance the technological state of the art and at the same time implement ideas and explain to the everyday citizen what is happening. The world's experience with COVID-19 has revealed many gaps in our past approaches to anticipating emerging infectious diseases. Most approaches to predicting outbreaks and identifying emerging microbes of major consequence have been with those causing high morbidity and mortality in humans and animals. These lagging indicators offer limited ability to prevent disease spillover and amplifications in new hosts. Leading indicators and novel approaches are more valuable and now feasible, with multidisciplinary approaches also within our grasp to provide links to disease predictions through holistic monitoring of micro and macro ecological changes. In this commentary, we describe niches for climate change and infectious diseases as well as overarching themes for the important role of collaborative team science, predictive analytics, and biosecurity. With a multidisciplinary cooperative "all call,” we can enhance our ability to engage and resolve current and emerging problems.

4.
Front Public Health ; 9: 817431, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1686578

RESUMEN

As the world looks forward to turning a corner in the face of the COVID-19 pandemic, it becomes increasingly evident that international research cooperation and dialogue is necessary to end this global catastrophe. Last year, we initiated a research topic: "Infectious Disease Surveillance: Cooperative Research in Response to Recent Outbreaks, Including COVID-19," which aimed at featuring manuscripts focused on the essential link between surveillance and cooperative research for emerging and endemic diseases, and highlighting scientific partnerships in countries under-represented in the scientific literature. Here we recognize the body of work published from our manuscript call that resulted in over 50 published papers. This current analysis describes articles and authors from a variety of funded and unfunded international sources. The work exemplifies successful research and publications which are frequently cooperative, and may serve as a basis to model further global scientific engagements.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Enfermedades Transmisibles/epidemiología , Humanos , Cooperación Internacional , Pandemias , SARS-CoV-2
5.
Global Security : Health, Science and Policy ; 6(1):18-25, 2021.
Artículo en Inglés | ProQuest Central | ID: covidwho-1559167

RESUMEN

The costs of responding and mitigating the COVID-19 pandemic is a critical example of the need for continual investment for global health security (GHS) preparedness in today’s inter-connected world as exemplified earlier with Ebola, Zika, and H1N1. Microbial diversity including endemic and emerging infectious diseases unique to Latin America are well known. When combined with geopolitical, socioeconomic, and environmental factors, especially climate change and human migration, which are expanding the range of disease vectors and pathogens, the risk for infectious disease outbreaks greatly increases. Enhancing GHS requires a greater awareness and cooperation within the region as well as more effective infectious disease surveillance systems. Frameworks such as the International Health Regulations and Global Health Security Agenda underpin policies to strengthen health systems. Greater international cooperation aimed to effectively enhance infectious disease surveillance are pivotal to increasing trust among partner countries and strengthen health security systems and best practices to respond and mitigate infectious disease outbreaks. Here we discuss infectious disease threats and risks associated with the current socioeconomic and political climate that influence GHS in order to demonstrate the need for further investment.

6.
Front Public Health ; 9: 659695, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1441153

RESUMEN

The current COVID-19 pandemic demonstrates the need for urgent and on-demand solutions to provide diagnostics, treatment and preventative measures for infectious disease outbreaks. Once solutions are developed, meeting capacities depends on the ability to mitigate technical, logistical and production issues. While it is difficult to predict the next outbreak, augmenting investments in preparedness, such as infectious disease surveillance, is far more effective than mustering last-minute response funds. Bringing research outputs into practice sooner rather than later is part of an agile approach to pivot and deliver solutions. Cooperative multi- country research programs, especially those funded by global biosecurity programs, develop capacity that can be applied to infectious disease surveillance and research that enhances detection, identification, and response to emerging and re-emerging pathogens with epidemic or pandemic potential. Moreover, these programs enhance trust building among partners, which is essential because setting expectation and commitment are required for successful research and training. Measuring research outputs, evaluating outcomes and justifying continual investments are essential but not straightforward. Lessons learned include those related to reducing biological threats and maturing capabilities for national laboratory diagnostics strategy and related health systems. Challenges, such as growing networks, promoting scientific transparency, data and material sharing, sustaining funds and developing research strategies remain to be fully resolved. Here, experiences from several programs highlight successful partnerships that provide ways forward to address the next outbreak.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Enfermedades Transmisibles/diagnóstico , Brotes de Enfermedades/prevención & control , Humanos , Pandemias , SARS-CoV-2
7.
Front Bioeng Biotechnol ; 9: 720315, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1394749

RESUMEN

High containment biological laboratories (HCBL) are required for work on Risk Group 3 and 4 agents across the spectrum of basic, applied, and translational research. These laboratories include biosafety level (BSL)-3, BSL-4, animal BSL (ABSL)-3, BSL-3-Ag (agriculture livestock), and ABSL-4 laboratories. While SARS-CoV-2 is classified as a Risk Group 3 biological agent, routine diagnostic can be handled at BSL-2. Scenarios involving virus culture, potential exposure to aerosols, divergent high transmissible variants, and zoonosis from laboratory animals require higher BSL-3 measures. Establishing HCBLs especially those at BSL-4 is costly and needs continual investments of resources and funding to sustain labor, equipment, infrastructure, certifications, and operational needs. There are now over 50 BSL-4 laboratories and numerous BSL-3 laboratories worldwide. Besides technical and funding challenges, there are biosecurity and dual-use risks, and local community issues to contend with in order to sustain operations. Here, we describe case histories for distinct HCBLs: representative national centers for diagnostic and reference, nonprofit organizations. Case histories describe capabilities and assess activities during COVID-19 and include capacities, gaps, successes, and summary of lessons learned for future practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA